If it's not what You are looking for type in the equation solver your own equation and let us solve it.
190-16t^2=0
a = -16; b = 0; c = +190;
Δ = b2-4ac
Δ = 02-4·(-16)·190
Δ = 12160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12160}=\sqrt{64*190}=\sqrt{64}*\sqrt{190}=8\sqrt{190}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{190}}{2*-16}=\frac{0-8\sqrt{190}}{-32} =-\frac{8\sqrt{190}}{-32} =-\frac{\sqrt{190}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{190}}{2*-16}=\frac{0+8\sqrt{190}}{-32} =\frac{8\sqrt{190}}{-32} =\frac{\sqrt{190}}{-4} $
| -75a+5=230 | | 800=59x=354 | | x+24.5=36.5 | | x8=-2 | | 7j^2+8j-2=0 | | (x+2)/12=6 | | U+160=32(2y+5) | | 7h^2-9=0 | | -1/x+2=7/5x+10+1 | | 4x^2-16×+8=-1(3×-1)*(x+1) | | F(x)=7x^2-5 | | 3m-(m+7)=m+14 | | x^2-9x-8=-11x | | 3x2−20=652 | | (2x-5)=5x-28 | | 8b+2=3 | | 8b+1=5 | | 8x+5=11+3x | | 6x+9x-21=84-6x | | 3t+4=25–2t | | x^2+24x-172=0 | | x+(3x+2(2))=107 | | 24y+36=y | | 2+(x+2)=3x-13 | | k/17=13 | | x+4/2=6-x-1/5 | | 2x+(x+6)=175 | | x+4/2=6-(x-1/5) | | 5(n-2)=35n= | | 5x-(2x-4)=119 | | 9x/12+4=x-8 | | (2x+3)+x=72 |